skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hadad, Yaser"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the design of high-performance heat and mass transfer devices such as liquid-cooled heat sinks, catalytic reactors, and catalytic convertors, parallel mini/microchannels are favored owing to their special potentials. Offering low pressure drop, providing high transfer surface area to volume ratio, and being easy to manufacture and optimize have been drawing thermal and chemical engineers attention to parallel channels for past decades. When working with parallel channels, the challenge of flow maldistribution is commonly faced which decreases their efficiency significantly. System total pressure drop and flow uniformity are two parameters that determine the system performance. In the present study, a variety of practical ideas, aiming to enhance parallel channels performance, are studied numerically. Inventive manifold designs with high hydraulic performance are created through the course of this study. The results of these designs are compared with basic conventional designs which show substantial enhancement. Analyzing less successful designs lead us to deep understanding of fluid dynamics in parallel channel heat and mass transfer devices. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. The increasing prevalence of high-performance computing data centers necessitates the adoption of cutting-edge cooling technologies to ensure the safe and reliable operation of their powerful microprocessors. Two-phase cooling schemes are well-suited for high heat flux scenarios because of their high heat transfer coefficients and their ability to enhance chip temperature uniformity. In this study, we perform experimental characterization and deep learning driven optimization of a commercial two-phase cold plate. The initial working design of the cold plate comprises a fin height of 3mm, fin thickness of 0.1 mm, and a channel width of 0.1 mm.A dielectric coolant, Novec /HFE 7000, was impinged into microchannel fins through impinging jets. A copper block simulated an electronic chip with a surface area of 1˝ × 1˝. The experiment was conducted with three different coolant inlet temperatures of 25◦ C, 36◦ C, and 48◦ C with varying heat flux levels ranging from 7.5 to 73.5 W cm2. The effects of coolant inlet temperatures and flow rate on the thermo-hydraulic performance of the cold plate were explored. In two-phase flow, increasing coolant inlet temperature results in more nucleation sites and improved thermal performance consequently. Thermal resistance drops with flow rate in single-phase flow while it is not affected by flow rate in nucleate boiling region. An improvement in the design of the cold plate was carried out, with the goal of increasing the number of bubble sites and flow velocity at the root fins, by cutting the original fins and creating channels perpendicular to the original channels. Three design parameters, fin height, width of machined channels, and height of short fins preserved through machined channels, were defined. It was observed that widening the machined channels and cutting fins to some point can improve the thermal performance of the cold plate. However, removing fins excessively adversely affects the thermal performance of the cold plate because of loss of heat transfer surface area. Moreover, preserving the short fins through the machined channels decreases thermal resistance as they increase heat transfer surface area and nucleation sites. Furthermore, a deep learning-based compact model is demonstrated for the two-phase cold plate design in the specific range of geometry and flow conditions. The developed compact model is utilized to drive the single and multi-objective optimization to arrive at global optimal results. 
    more » « less
  3. null (Ed.)
  4. Due to their lower pressure drop, impinging cold-plates are preferred over parallel flow cold-plates when there is no strict space limitation (i.e. when flow can enter perpendicular to the electronic board). Splitting the flow into two branches cuts the flow rate and path in half, which leads to lower pressure drop through the channels. A groove is used to direct the flow exiting the diffuser into the channels. The number of the geometric design parameters of the cold-plate will vary depending on the shape of the groove. In this research, the response surface method (RSM) was used to optimization the fin geometry of an impinging cold-plate with a trapezoidal cross section groove. The cold plate is used for warm water cooling of electronics. Three fin parameters (thickness, height, and gap) and three groove parameters were optimized to reach minimum values for hydraulic and thermal resistances at fixed values of coolant inlet temperature, coolant flow rate, and electronic chip power. 
    more » « less
  5. Recent commercial efforts have reestablished the benefits of cooling server modules using direct liquid cooling (DLC) technology. The primary drivers behind this technology are the increase in chip densities and the absolute need to reduce the overall data center power usage. In DLC technology, a cold plate is situated on top of the chip with thermal interface material between the chip and the cold plate. The low thermal resistance path facilitates the use of warm water which helps data centers in replacing the chilled water system by a water side economizer utilizing ambient temperature. This work describes the effort to leverage DLC by employing microchannel cold plates to cool multi-chip modules. The primary objective of this work is to build a sophisticated test rig to characterize the flow and thermal performance of a microchannel cold plate for cooling a two-die chip. This study highlights the challenges of building an experimental setup which simulates a two-die chip package and the approaches taken to overcome the challenges. A parallel channel cold plate is used to benchmark the performance. Tests were conducted for a set of independent variables like flow rate, input power to dice, coolant temperature, flow direction and TIM resistance. The results are presented as PQ curves, specific thermal resistance curves and case temperature distribution reflecting the effect of changing the input variables. 
    more » « less
  6. In electronics cooling, water is increasingly replacing air for applications requiring high heat flux. Water is the ideal substitute due to its high specific heat capacity and density. Indeed, high values of heat capacity (high density and specific heat capacity) enable water to receive, store and carry higher amounts of energy compared to air. Water's incompressibility and very low specific volume also requires smaller amounts of mechanical work for fluid circulation. Using warm water instead of chilled water makes the cooling process more economical, but requires more efficiently designed cold-plates. Our current work focuses on modeling and optimization of a V-groove mini-channel cold-plate using warm water as the coolant. Our results show that the performance of an impinging channel heat sink is significantly different compared to parallel channel designs. Dividing the flow into two branches cuts the fluid velocity and flow path in half for the impinging design. This reduction in the fluid velocity and flow length affects the developing thermal boundary layer and is an important consideration for a shorter length heat exchanger (where the channel length is comparable to the thermal entrance length). Distributing the coolant uniformly to every channel is a challenge for impinging cold-plates where there are strict limitations on size. 
    more » « less